A [9]ANNULENONF DFRIVATIVF

by Mordecai Rabinovitz, Frnst D. Bergmann and Aviv Gazit

Department of Organic Chemistry, The Hebrew University, Jerusalem, Israel (Received in UK 18 May 1971; accepted in UK for public tion 15 June 1971)

In the series of the monocyclic conjugated ketones, called annulenones,¹ the [3], [5] and [7] members or their derivatives have been rather extensively studied. Recently, the $[11],^2$ [13],¹ [15]³ and $[17]^4$ members of the series have been reported. The only missing member is the nine-membered ring ketone, [9]annulenone $\underline{1},^5$ the π -electron analog of cyclopentadienone.⁶ We wish to report the preparation and properties of the dibenzo derivative of $\underline{1}$, as well as a versatile route to derivatives of the corresponding hydrocarbon 11H-dibenzo[a, c]cyclononatetraene (DBCNT) (2).⁷

Ozonolysis of 2,3-dihydro-1H-cyclopenta[]]phenanthrene⁸ ($\underline{3}$) yielded the diketone $\underline{4}$,⁹ mp 190° (FtOH, 90%); mass spectrum, m/e 250 (M), 222 (M-CO), 194 (M-2CO) and 152 (100%); $\nu_{\text{max}}^{\text{CHCl}_3}$ (cm⁻¹) 1670, 1680 (C = O); $\lambda_{\text{max}}^{\text{EtOH}}$ 230 (ε 16,250) and 285 nm sh (2,200); nmr (CDCl₃) δ = 7.54 ppm (8H, m), 2.56 (4H, m) and 1.9 (2H, m). Treatment of $\underline{4}$ with PhLi in ether afforded 80% of the corresponding diol $\underline{5}$,⁹ mp 180° (benzene-hexane); mass spectrum, m/e 406 (M), 388 (M-H₂O) and 370 (M-2H₂O); $\nu_{\text{max}}^{\text{CHCl}_3}$ (cm⁻¹) 3400 (OH); $\lambda_{\text{max}}^{\text{FtOH}}$ 254 (ε 1,250) and 260 nm (1,240). The nmr spectrum shows signals at δ = 8.08 (2H, dd, J = 8.2 Hz assigned to protons

 H_4 and H_5 of the biphenyl system), 7.2 (4H, m H_2 , H_3 , H_6 and H_7), 7.16 (10H, broad singlet, 6.4 (2H, dd, J = 8.2 Hz, assigned to protons H_1 and H_8 facing the phenyl rings and thus shielded) and 2.15 (8H, m, alicyclic and hydroxyl protons).¹⁰ Dehydration of 5 with ptoluenesulfonic acid in benzene and chromatography on silica-gel afforded $\underline{6}$, θ a 9,13-diphenyl derivative of DBCNT ($\underline{2}$) in 70% yield, mp 113° (hexane): mass spectrum, m/e 370 (M), 356 (M-CH₂), 278 and 215 (100%); λ_{max}^{EtOH} 245 (ϵ 22,000), 265 (15,400) and 317 nm (90); nmr (CDCl₃) δ = 7.13 (18H, m, aromatic), 5.95 (2H, t, H₁₀ and H₁₂, J = 6.0 Hz) and 3.0 (2H, t, allylic H₁₁, J = 6.0 Hz),¹⁰ Dreiding models indicate the molecule of $\underline{6}$ to be nonplanar and dissymmetric, so that the observed equivalence of the allylic protons at room temperature points to a rapid ring inversion.¹¹

The synthesis of the dibenzol9 annulenone derivative $\underline{7}$ was achieved by an analogous route starting from 8.8 Treatment of 8 with ethylene glycol and TsOH gave the ketal,¹² and its ozonolysis gave the triketone monoketal $\underline{9}$, $\mathbf{9}$ mp 132° (EtOH, 90%): in the ir the carbonyl absorption appears at 1670 cm⁻¹; λ_{max}^{EtOH} 245 (¢ 4,800) and 282 nm (800); nmr (CDCl₃) ppm δ = 7.60 (8H, m), 3.96 (4H, s, ketal protons) and an AB quartet (δ_{Δ} = 3.10, δ_{B} = 2.75, J_{AB} = = 14 Hz, 4H, assigned to the alicyclic protons).¹³ Treatment of $\underline{9}$ with PhLi yields the diol <u>10</u>, ⁹ mp 217° (70%; cyclohexane); $\nu \frac{\text{CHCl}_3}{\text{max}}$ (cm⁻¹) 3400 (OH), 780, 750 and 700; $\lambda \frac{\text{FtOH}}{\text{max}}$ 257 ($\varepsilon 4,200$) and 325 nm sh (280). The nmr spectrum was similar to that of 5: $\delta = 8.22$ (2H, dd, J = 8.2 Hz, assigned to H_4 and H_5), 7.2 (4H, m, $H_{2,3,6,7}$), 7.05 (10H, broad singlet, phenyl protons), 6.28 (2H, dd, J = 8.2 Hz), 4.86 (2H, m, OH), 4.1 (4H, s, ketal protons) and an AB quartet ($\delta_A = 2.91$, $\delta_B = 2.40$ ppm, $J_{AB} = 15.2$ Hz).^{10,13} Reaction of 10 with p-toluenesulfonic acid afforded the desired 9,13-diphenyl-11H-dibenzo[a, cjcyclononatetraene-11-one $(\underline{7})$,9 mp 193° (chromatography on silica-gel); mass spectrum, m/e 384(M), 356 (M-CO), 330, 279 and 254 (100%); $\nu \frac{\text{CHCl}_3}{\text{max}}$ (cm⁻¹) 1605 (C = O);¹⁵ $\lambda \frac{\text{EtOH}}{\text{max}}$ 229 sh (\$\epsilon\$ 28,000), 252 (13,300) and 309 nm (18,200). The uv spectrum is in good agreement with the uv spectra of other unsaturated nine-membered ring ketones,¹⁶ but shows higher intensity bands due to the higher degree of conjugation. The nmr spectrum shows signals at δ = 7.30 (18H, m), 6.63 ppm (2H, s, vinylic H_{10} and H_{12}).

The [9]annulenone is a 4n+3 ring system and could be expected, <u>if planar</u>, to sustain a paramagnetic ring current, which would shift the vinylic protons H_{10} and H_{12} to higher field.¹⁷ By comparison with literature data¹⁶ it appears that the vinylic absorption is not shifted and no ring current is present; we could, therefore, assume that the molecule is not planar.¹⁸

References

- 1. G. M. Pilling and F. Sondheimer, J. Am. Chem. Soc., 90, 5610 (1968).
- W.Grimme, J.Residorff, W.J.Junemann and E. Vogel, J.Am. Chem. Soc., <u>92</u>, 6335 (1970).
- G. P. Cotterrell, G. H. Mitchell, F. Sondheimer and G. M. Pilling, J. Am. Chem. Soc., 93, 259 (1971).
- 4. a) G.W.Brown and F. Sondheimer, J. Am. Chem. Soc., <u>91</u>, 760 (1969).
 b) J.Griffiths and F. Sondheimer, ibid., 91, 7519 (1969).
- 5. Previous attempts of preparation have failed:
 - a) O. L. Chapman and J. Meinwald, J. Org. Chem., 23, 162 (1958);
 - b) K. Hafner, The 3rd Jerusalem Symposium on Aromaticity, Pseudoaromaticity, Antiaromaticity, Jerusalem, 1970, p. 256.
- 6. E. W. Garbisch and R. F. Sprecher, J. Am. Chem. Soc., 91, 6785 (1969).

- 7. a) M. Rabinovitz, A. Gazit and E. D. Bergmann, Chem. Comm. 1430 (1970);
 - b) P.J. Garratt and K.A. Knopp, Chem. Comm. 1215 (1970).
- A. C. Cope, L. Field, D. W. H. MacRowell and M. E. Wright, J. Am. Chem. Soc., <u>78</u>, 2547 (1956). The compound is commercially available from Aldrich Chemical Co.
- 9. All new compounds gave satisfactory C- and H- analyses.
- 10. The assignment was confirmed by double irradiation experiments.
- 11. The ring inversion of cyclononatetraene could not be frozen even at -130° ;¹⁴ no change was observed in <u>2</u> at -80° .^{7a}
- 12. The uv spectrum of the ketal was typical for a phenanthrene derivative; nmr δ (CDCl₃) = 8.75 (2H, m), 7.75 (6H, m), 4.11 (4H, s, ketal protons) and 3.60 (4H, s, allylic protons); mass spectrum, m/e 276 (M).
- 13. Variable temperature studies are under way.
- 14. K. Hajo and S. Masamune, J. Am. Chem. Soc., 92, 6690 (1970).
- 15. The [11], [13], [15] and [17] annulenones display a carbonyl absorption at 1600 1630 cm⁻¹.¹⁻⁴ Also tropone derivatives absorb close to this region.
- 16. J. Ciabattoni and G. H. Berchthold (J. Org. Chem., <u>31</u>, 1336 (1966)) prepared cyclononadienone and -trienon derivatives. These compounds absorb in the ir at $1610-1620 \text{ cm}^{-1}$ and show high intensity bands in the uv $\lambda_{\text{max}}^{\text{FtOH}}$ 228 (ϵ 19,800), 283 nm (10,600) and at 227 (14,200), 305 nm (17,200), respectively; their vinylic protons absorb at δ (CDCl₃) = 6.83 and 6.46 respectively.
- 17. [17]Annulenone was found to sustain such a ring current,⁴ while the high field shift of the vinylic protons in [5]annulenone was attributed to other effects.⁶ [13]Annulenone has no protons directly attached to the ring, and no effect can be observed.¹
- 18. Compound $\underset{=}{6}$ is probably rapidly inverting at room temperature. This point is under investigation.